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Abstract. Neural networks of the Potts type, where neurons can occupy 9 3 2  discrete 
states, are considered for couplings which need not be symmetric. The time evolution of 
the macroscopic overlap between the instantaneous microscopic state of the system and 
the learned patterns is studied for small values of 9 and for a finite (small) number of 
patterns. Retrieval and limit-cycle behaviour in this type of model is discussed in some 
detail. 

1. Introduction 

Recently, the theory of neural networks has been extended to include neurons with 
more than two discrete states [ 11. This has been done by viewing the neurons as Potts 
spins [2] having q possible discrete states. In [ 13 the capacity of storage and retrieval 
of information in this type of network has been discussed, mostly concentrating on 
the limit of zero temperature. In this discussion it was assumed that the synaptic 
connections Jij are symmetric. 

In the present paper we consider similar models extended to couplings which need 
not be symmetric. We study their general temporal development, thereby asking the 
specific question to what extent a built-in pattern can be retrieved at different noise 
levels in the system. In particular, we derive an evolution equation for the probability 
density of some macroscopic parameters measuring the overlap between the instan- 
taneous microscopic state of the system with one of the built-in patterns. In this way 
we generalise the results obtained in [3] to these Potts networks. 

We then discuss in detail the solutions of this differential equation for the overlap, 
for small values of q, for a few built-in patterns and for the number of neurons tending 
to infinity. Depending on the symmetry properties of the synaptic connections, we 
find the possibility of retrieval or limit-cycle behaviour. 

The rest of this paper is organised as follows. In 0 2 we describe the neural network 
models we study in the following. Section 3 derives the flow equation for the macro- 
scopic overlap, starting from the master equation. In § 4 we study in detail the solution 
of this equation and its stability in the case of two, three and four Potts states with 
two and three built-in patterns for different symmetric and asymmetric synaptic connec- 
tions. We compare our results with those obtained for the Hopfield model in [3,4] 
and with some of the statements made for the Potts model with symmetric coupling 
and near zero temperature in [l]. 
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2. The model 

In this section we describe the model for the neural networks we study below. We 
follow and extend the recent work of Kanter [ l] .  

We consider a network of N neurons. Each of the neurons can have more than 
two discrete states since it is viewed as a Potts spin having q possible values. The 
instantaneous configuration of all the spin variables at a given time describes then the 
state of such a network. The interactions among the neurons determine the dynamic 
evolution of the network in the phase space of q N  states. 

The neurons are interconnected by a synaptic matrix of strength Jij which determines 
the contributions of a signal fired by the j th  presynaptic neuron to the postsynaptic 
potential which acts on the ith neuron. This contribution can either be positive 
(excitatory synapse) or negative (inhibitory synapse). The potential energy h ,  of 
neuron i which is in a Potts state ui is the sum of all postsynaptic potentials delivered 
to it in a time unit, i.e. 

where mu,,r is an operator obeying Potts symmetry, given by 

Here q is the number of Potts states, cr, a q-state Potts variable and S the Kronecker 
delta. The potential energy (2.1) of the postsynaptic neuron i depends both on the 
state of neuron i and its neighbours and on their synaptic efficiency. 

In this paper the J: will not be assumed to be symmetric in (ij) and (k l ) .  This 
means that the equilibrium properties of the system can no longer be described in 
terms of a Hamiltonian. At zero noise the stable states of the system are those 
configurations in which every spin u, is in a Potts state which gives a minimal value 
to h , .  In the presence of noise there is a finite probability of having configurations 
other than these minima. This can be taken into account by introducing an effective 
temperature [4]. 

To build in the capacity for learning and memory in this network, its stable 
configurations must be correlated with the configurations determined by the learning 
process. To achieve this, we take the following form for the interaction, expressing 
the learning rule: 

1 
" q 2 N  a ,b= l  

f m k ~ , k A a , b m k ~ , l  Jk '  = - 

with the m given by (2.2). Here Aa,b is a p X p  matrix which need not be symmetric 
and the p sets {kp} are the patterns fixed by the learning process. The k f  are chosen 
as quenched random variables, assuming the values 1 ,2 , .  . . , q with equal probability. 
We remark that (2.3) tells us that every pair of neurons is connected. Furthermore 
the choice of random (anisotropic) interactions excludes the possibility that all spins 
occupy the same Potts state, i.e. there is no ferromagnetic order [ 5 ] .  Using the learning 
rule (2.3), h ,  can be written as 

This model will have the capacity of storage and retrieval of information if the 
emerging dynamically stable configurations {vi}  are correlated with the learned patterns 
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{ k y } .  This is what we want to study in this paper by developing an equation specifying 
how an arbitrary initial state of the spins changes in time and to what extent one of 
the built-in patterns is approached. We will concentrate on the case of finite p and q 
for N + CO. In this study an important role is played by the order parameter Q", which 
is the macroscopic overlap with a pattern a :  

In a random spin configuration Q" = 0. When a, = kp ,  i = 1,2,  . . . , N, which represents 
complete retrieval of pattern a, then Q" = q - 1. 

3. The flow equations for the overlap 

In order to find out how an arbitrary initial state of the Potts spins {a,}, i = 1 , 2 , .  . . , N, 
of the network changes in time and to what extent, if at all, one of the built-in patterns 
is approached, we now derive a flow equation for the overlap. 

We suppose that in our model sequential updating of the spins occurs, i.e. at each 
elementary time step only one spin is updated. The transition probability for this spin 
to go into another Potts state is given by the expressions 

which satisfy detailed balance. We then consider the probability p i a ,  t )  of observing 
the network in a state U = { ul , . . . , aN} ,  ui = 1,2,  . . . , q, at time t. The following master 
equation is valid: 

- C &  w ( a j + u : ) p ( u  I , . . . ,  u i , . . . ,  U N ;  t ) .  (3.2) 
' Vl 

From this basic equation we want to obtain an equation describing the evolution of 
the macroscopic overlap parameter. In order to do so we first note that the summation 
over the spin index i will be performed using the partition method introduced in [ 6 ] .  
The set of all indices is divided into subsets z k  which depend on the built-in patterns 
as follows: 

(3.3) 

where ki is the p-dimensional vector { k : ,  k: ,  . . . , kf'} for spin i. The number of 
p-dimensional vectors k is q p ,  which is much smaller than the number N of vectors 
k,.  Therefore the number of indices in each of the sets z k ,  denoted by I I k I ,  will almost 
be the same for all k if the ky are chosen randomly. It is 

= q-"N+ o ( N 1 ' 2 ) .  (3.4) 
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Secondly, besides the (total) overlap 
restricted to the set I k ,  namely 

Q”, we introduce ‘submagnetisations’ for spins 

(3.5) 

We remark that q-’IIk1(1 + p i ( a ) )  denotes the number of spins in the set I k  for which 
the state ai = cy. The total overlap Q“ can then be written as 

(3.6) 

Thirdly, we define an operator Fi allowing us to change a Potts spin ui for all functions 
+(a):  

Fi:’#J(ai, . . . ,  Uj , . . . ,  U N ) + F , ~ ( U ) = ~ ( ( T I  ,..., FCj ,..., U N )  
(3.7’) 

F a i = a i m o d q + l .  

Consequently we have 

where U indicates the power to which F, is raised, i.e. U = 1, 2, .  . . , q with Fq = 1. 
In the rest of this section we work with the submagnetisations (3.5). We define the 

probability of finding the system at time t in a state with macroscopic parameters 
specified by the qP+’-dimensional vector p ( a )  = { p i ( a ) } ,  cy = 1, 2 , .  . . , q;  k = 
{ k ’ ,  k’, .  . . , k P } ,  k” = 1, 2, .  . . , q as 

P b ,  t ) = C p ( w ,  t )6(p - p ( a ) ) .  (3.9) 
U 

Using (3.2) and (3.7) we arrive at the following master equation for the probability (3.9): 

(3.10) 

the parameters p become continuous variables 

-- ap(p, t )  - C C  E’ w(ai+F”(+i)pla,  ~ ) [ ~ ( ~ - ~ ( F Y ~ ) ) - ~ S ( E L - - L L ( ~ ) ) I .  
at v i v = l  

In the thermodynamic limit N + 
( p i  E [-1, q - 11) such that we can write 

x w ( a ,  + F”a , ) [6 (p  - p ’ + x )  - 6(p - p ’ ) ] .  (3.11) 

To continue we need several observations. Firstly, recalling (3.1), (2.1) and (2.3) we 
infer that the transition rates w can be written as functions of the components of the 
qP+’-dimensional vector x and the p-dimensional vector Q as follows: 

(3.12) 

with m+ denoting the p-dimensional vector with components mkU,u and where, 
using (3.5) 

W ( ~ I  * F ” ~ L )  = w ( ( m k , , F ’ r ,  -mk,,u,) * A Q )  

(3.13) 
1 
4 n  

m k , , F ” c r ,  - mk,,u, = - I I k ,  1 C m k , , o  ( p  i, ( Fr a )  - p i ,  (a) ) .  
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Secondly, denoting the difference [ p ( a )  - p (  F r a ) ]  for an arbitrary spin i E I k  in a 
Potts state ui by the qP”-dimensional vector y; ,” ,  it is straightforward to check that 
the (p ,  k ‘ )  component of yzs’ is only non-zero if k = k’ .  

Then the x-dependent part of (3.11) can be written as 

with 

G(x)= ~ ( ~ , + F ” u j ) [ 6 ( p - p ‘ + + ) - 8 ( p - p ’ ) ] .  

This, together with the relation 

c 8 ( p ‘ - p ( a ) ) p ( a ,  t ) p : ( a )  = P P P h ’ ,  t )  
U 

allows us to obtain for (3.11) 

(3.15) 

(3.16) 

x x  w k ( a +  F”cu)[8(p-p’+y~’Y)-6(y-p’)] (3.17) 

where w k ( a  + F’a) is the transition rate for cy + F”a for a spin in the set I k .  For every 
smooth function 4 ( p )  we then get 

Y 

(3.18) 

The last step in our derivation is an expansion in powers of 1/N.  Employing (3.4) 
and the observation about the vector y.k”’”, made after (3.13), we find 

(3.19) 

Inserting this result in (3.18) and doing a partial integration with respect to p’ ,  we 
arrive at 

X I  W k ( C Y ~ F F Y c y ) ( m p , * - m P , F Y a )  +o(N-’”) .  (3.20) 

Since this equation holds for every smooth function 4 it has to be valid for the 
integrands, leading to (after taking N + w )  a continuity equation for the density of a 
flow in the qP+’-dimensional space. The corresponding equation for the flow itself is 
then 

Y ) 

(3.21) 
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This equation is our final result. We remark that in the course of the derivation we 
have not used the specific form (3.1) for the transition probability w. Hence other 
expressions for w, satisfying detailed balance, could be employed. 

Taking q = 2, i.e. the Hopfield model, and using (3.1) and (3.6) it is straightforward 
to check that (3.21) leads to the flow equation for the total overlap Q" written down 
in [3]. (See also [7].) For general q additional parameters have to be taken into 
account. For example, when p = 2 it turns out that the q3 equations (3.21) with wk as 
in (3.1) can be reduced to the following flow equations in the three-dimensional space 
(Q', Q2, D G  x k  ~ f k , k ) ) :  

dQ" 1 
- = - { 2q ( q  - 1 ) sinh (A ( R  a + R ')) 
dt  N ,  2 T  

[ ( ( R " + R b )  +exp x ( R " + R b )  ) (2.T 
- D  ( q - l ) e x p  -- 

2T 

+- 2q(q-1) sinh - ( R " - R b )  
N2 { [ (2T 

-q'Q" exp - - ( R " - R b )  [ (;T 

+ ( q  -2) exp( -$ .a) +exp(  . a ) ]  

-q2Qb [ exp($ R " )  -enp(& (R"  - R b ) ) ]  

- D  2sinh - ( R " - R h )  - (q-2)exp  --R" [ (2T  ( ; T )  

(3.22) 

T- $, { 2 q ( q  - 1) sinh 

N2 = q2{  2 cosh (& (R" - R b )  

+ ( q  - 2) [ 2 cosh (& R " )  + 2 cosh (5 R b )  + ( q  - 3)]}. 

Finally we note that several generalisations of this derivation, similar to those in 
the Hopfield case [3] can be worked out. For example, a neuronal threshold can be 
included in the local field h , ,  a constant background coupling can be added to the 
connections .I:, biased patterns [8] can be considered by modifying the connections. 
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4. Retrieval and limit-cycle behaviour 

In this section we discuss the numerical solutions of (3.21) and their stability as a 
function of the noise level (i.e. temperature) for the specific q = 2, 3, 4 state networks 
with two and three built-in patterns and three different forms of the matrix A appearing 
in the synaptic connection coefficients (2.3). From these solutions we calculate the 
overlap Q" using (3.4) and (3.6) to study the retrieval properties of these networks. 
For a representative set of p i ,  our results are summarised in figures 1-5. In figures 
1-3 the overlap flow diagrams projected on the (Q' ,  Q') plane are shown. 

For p = 2, q = 2 (see figure 1 )  we recover the results obtained in [3]. They are also 
a nice illustration of the extensive stability analysis given in [4] for the case of symmetric 
couplings. For completeness, and to be able to compare directly with results for higher 
p and q, we present a short discussion. 

In the first row of diagrams we have taken A to be the unit matrix, corresponding 
to the standard Hebb connections. We can locate in the first diagram ( T  = 0.1) the 
2 p  = 4 Mattis states, thermodynamically equivalent to the ferromagnetic state, near the 
corners (kl, O), (0, i l l .  They are local minima of the free energy for all T < 1 .  They 
move along the diagonals for increasing T to reach the origin Q = O  for T = 1 .  
Furthermore, near the points (*;, 1;) we locate the symmetric solutions discussed in 
[4] (corresponding to the stationary solutions of (3.21)) as unstable saddle points also 
going to the origin with increasing T. We see no asymmetric solutions. 

In the second row of diagrams, corresponding to the second (symmetric) choice 
for A, we have an attractor near (+& -4) and (-4, +i) also moving to the origin when 

-1 0 1 -1 0 1 -1 0 1 

Figure I (see [3]). The flow lines in the ( Q ' ,  Q2) plane for q = 2, p = 2 for the choice of 
matrix A indicated in front of each row and at the temperature indicated above each 
column. In each diagram, the allowed values of Q are contained in the inner square with 
corners (*l ,  0), (0, *I).  
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T increases. In the third row, where A is asymmetric, we find limit-cycle behaviour, 
with most of the time spent near the corners ( k l ,  0), (0, *l). Again the limit cycle 
contracts towards the origin with increasing temperature. 

The conclusion is that for T 3 1 the overlap vector Q approaches the origin in all 
cases, telling us that no correlation with the built-in patterns remains. The strongest 
correlation is found at low temperatures and in the third case the correlations switch 
back and forth between the learned patterns and their negatives. 

For p = 2, q = 3 some results are shown in figure 2. At this point we have to explain 
the particular normalisation of the temperature, namely T( q - l ) ,  introduced in order 
to get comparable temperatures in the different models. It turns out by looking at the 
first and second derivative of the free-energy density for the symmetric models (calcu- 
lated, e.g., for the standard Hebb connections by using (7 )  of [ 13) that the stationary 
solution Q = 0 of (3.21) and (3.6) is an attractor for T 3 q - 1. For the other models, 
the numerical solutions of (3.21) have the same property. 

1 0  1 2 - 1  0 1 2 - 1 0  1 2  

Figure 2. The flow lines in the ( Q ' ,  Q2) plane for q = 3, p = 2 for the choice of matrix A 
indicated in front of each row and at the temperature indicated above each column. In 
each diagram, the allowed values of Q are contained in the inner region with corners 
(0,2), (2,0), (1, -11, (-1, -11, (-1, 1). 

The general behaviour of the flow lines resembles the q = 2 case. However, some 
differences have to be noted, illustrating the remarks made by Kanter [l] in the case 
of symmetric couplings. In the first row of diagrams of figure 2, we observe the p = 2 
Mattis states located near the corners (2,O) and (0,2) at low T and moving towards 
the origin with increasing T. From (3.22) and (3.23) it follows that the location of 
these Mattis states is given by 



Ports-glass neural networks 

0 2 -  

1 , I , I , ! .  

4417 
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.1 
-1 0 1 2 

U' 

Figure 3. The flow lines in the (0'. 
T = 2.1. 

Q2) plane for q = 3, p = 2 with A the unit matrix and 

D 

Figure 4. The overlap parameters Q', Q2, Q3 as a function of time for q = 2, p = 3 with 
A the unit matrix and at two different temperatures. In (a )  T=0.48. The starting values 
are Q' = Q2 = 0.333, Q3 = 0.334. The upper curve gives Q3, the lower curve gives both Q' 
and Q2. In (b) T =  0.4. The initial values are Q' = 0.31, Q2 = 0.32, Q3 = 0.37. 

2.0 

1.6 

1 . 2  
0 

0.8 

0.4 

c 
I , > - r -  I 

20 40 60 80 1 
Time 

0 

Figure 5. The overlap parameters Q', Q2, Q3 as a function of time for q = 3, p = 3 with 
A the unit matrix and T = 0.25. The initial values are Q' = Q2 = 0.6666, Q3 = 0.6668. The 
upper curve gives Q3, the lower curve gives both Q' and Q2. 
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for a = 1, b = 2 or a = 2, b = 1. For q = 3, these equations have a solution Qb # 0 for 
T < T3 = 2.18528(1). At T3 the overlap jumps from Q h  = 0.7545(5) to Q b  = 0. Further- 
more, there is one symmetric saddle point solution at (1, 1) and an attractor at (-1, -1). 
The latter can be considered as the 'opposite' of the learned patterns (i.e. U, # k,' and 
U, # k:) ,  so it does not represent recognition. They both move to the origin when T 
increases. Finally at T =  q - 1 = 2 this (-1, -1) attractor reaches the origin before the 
Mattis states do. So both the origin and the Mattis states are local minima of the free 
energy for 2 s  T s  T3 (see figure 3). This does not occur for q =2.  

In the second row of diagrams of figure 2 we have again an attractor near (1 ,O)  
and (0, 1) at low T, moving to the origin when T increases. In the third row we find 
limit-cycle behaviour analogous to the q = 2 case. Again the conclusion is that in all 
cases of figure 2, the overlap becomes zero for T 2 2 .  The strongest correlation is 
found at low T. 

For p = 2, q = 4 we found qualitatively similar results, so we do not show any 
diagrams here. Again the overlap jumps from Q b  = 1.519(3) to Q b  = O  at T4= 
3.72816(1). Both the origin and the Mattis states are local minima of the free energy 
for q - l = 3 s  T s  T4.  

For p = 3 we have restricted ourselves here to models with the standard symmetric 
connections, illustrating in particular the behaviour of the symmetric solutions. For 
q = 2 figures 4( a )  and 4( 6 )  show that for T = 0.40 a nearly symmetric state is attracted 
towards a symmetric state while for T = 0.48 such a state evolves to a Mattis state. 
This is in agreement with the observation in [3] that a symmetric state with three equal 
components becomes locally stable below T = 0.461. For q = 3 we see that at low T 
(figure 5, T = 0.25) a nearly symmetric state becomes a Mattis state. This shows that 
the symmetric solutions are unstable for low T, as remarked also in [l]. So figures 4 
and 5 illustrate that any stable solution near T +  0 must have one dominant macroscopic 
overlap in the q = 3 model, contrary to the q = 2 Ising case. 
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